Functions
Limits and Derivatives
Applications of Differentiation
Integration

PRAXIS: Limits

  1. Use a table to guess the limit

$$\lim_{x\rightarrow 2} \sqrt{x^2+1}$$

Your table must have at least 10 rows: 5 values less than \(2\), and 5 values greater than \(2\). The \(x\)-values must also approach \(x=2\) as demonstrated in examples in the lesson(s).

  1. Use a table to guess the limit

$$\lim_{x\rightarrow -1} \frac{x^2+2x+1}{x+1}$$

Your table must have at least 10 rows: 5 values less than \(-1\) and 5 greater than \(-1\), similar to what you did above.


Let \(f\) be the function defined by the graph below

graph with an asymptote and several jumps

Find the following limits if they exist.

  1. \(\lim_{x\rightarrow 1^+} f(x)\)
  2. \(\lim_{x\rightarrow 4^+} f(x)\)
  3. \(\lim_{x\rightarrow 6} f(x)\)
  4. \(\lim_{x\rightarrow 9} f(x)\)
  5. \(\lim_{x\rightarrow 12} f(x)\)
  6. \(\lim_{x\rightarrow 15} f(x)\)

Find the following limits using algebra and/or substitution.

  1. \(\lim_{x\rightarrow 7} 3.14x^2-5x+1\)
  2. \(\lim_{x\rightarrow 50} 10\)
  3. \(\lim_{x\rightarrow -4}\frac{x^2+8x+16}{(x+4)^2}\)
  4. \(\lim_{x\rightarrow 2}\frac{x^2-4}{x-2}\)
Scroll to Top