Functions
Limits and Derivatives
Applications of Differentiation
Integration

PRAXIS: Derivative Rules

Find the derivative of the following functions

  1. \(f(x)=4x^2+4x+1\)
  2. \(g(x)=5e^x+3.14x+\ln(x)\)
  3. \(h(t)=(t^2+1)^4\)
  4. \(f(r)=(3r^2-5r+1)\cdot e^r\)
  5. \(k(x)=e^x\cdot \ln(x)\)
  6. \(J(t)=\frac{t^2}{t^2-6t+1}\)
  7. \(L(p)=\ln(x^{30}+e^x)\)
  8. \(P(t)=e^{x^3-2x}\)
  9. \(T(x)=\frac{x^7+\ln(x)}{x+1}\)
  10. \(N(x)=\frac{\ln(x^2+5)}{x^2-1}\)
  11. \(P(t)=(x^2+1)^5\cdot (x^3-2x+1)^3\)

Find the instantaneous rate of change of each of the following functions at the given \(x\)-value.

  1. \(G(x)=x^2+5.142x+9.6\) at \(x=1.45\)
  2. \(H(x)=(4x^2+1)^5\cdot (x^2-1)\) at \(x=2\)
  3. \(K(x)=\frac{e^{4x}}{7x+1}\) at \(x=0\)

Find the equation of the line tangent to the function at the given \(x\)-value:

  1. \(f(x)=x^2+5x+3\) at \(x=1\)
  2. \(g(x)=(5x^2+6x+7)^3\) at \(x=0\)
  3. \(h(x)=\frac{5}{x^3}\) at \(x=1\)
Scroll to Top